Abstract

Device modeling and simulation studies of a CdTeSe thin film solar cell have been carried out. A variety of band-gap profiles, including ungraded, front graded, back graded, and double graded profiles of the CdTeSe absorber layer are examined and their performance characteristics have been analyzed. The calculation reveals that single junction cells with band-gap at the optimum value of 1.38 eV exhibit the maximum performance; alloys of CdTe and CdSe with a ratio of 1:1 forming CdTe0.5Se0.5 achieve the band-gap of 1.38 eV due to the bowing effect. The benefits of the band-gap grading are evaluated when the minimum band-gap is set at the optimum band-gap of 1.38 eV. It is shown that only few graded band-gap profiles exhibit an increase in efficiency, while most of graded profiles reduce performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.