Abstract

On the basis of density functional theory calculations with generalized gradient approximation, we have investigated in detail the cooperative effects of uniaxial strain and degenerate perturbation on manipulating the band gap in silicene. The uniaxial strain would split π bands into πa and πz bands, resulting in Dirac cone movement. Then, the hexagonal antidot would split πa (πz) bands into πa1 and πa2 (πz1 and πz2) bands, accounting for the band gap opening in the superlattices with the Dirac cone being folded to the Γ point, which is a different mechanism as compared to the sublattice equivalence breaking. The energy interval between the split πa and πz bands could be tuned to switch band gap on and off, suggesting a reversible switch between the high charge carrier velocity properties of massless Fermions attributed to the linear energy dispersion relation around the Dirac point and the high on/off properties associated with a sizable band gap. In addition, the gap width could be continuously tuned by...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.