Abstract

Feature extraction plays a central role in classification of hyperspectral data. We propose a clustering-based feature extraction (CBFE) method in this letter. The proposed method is supervised and only needs to calculate the first-order statistics. Thus, CBFE has better performance than some popular supervised feature extraction methods such as linear discriminant analysis, generalized discriminant analysis, and nonparametric weighted feature extraction in small sample size situation. In addition, CBFE works better than unsupervised approaches such as principal component analysis in classification applications. CBFE considers a vector associated with each band that is composed by the mean values of all classes in that band. Then, a clustering method such as k-means is run to group the similar bands in one cluster. The selected number of clusters is equal to the number of extracted features. Experiments carried out on two different hyperspectral data sets demonstrate that the CBFE has better performance in comparison with some conventional feature extraction methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.