Abstract

Vanadium oxide (VO2) is a narrow band gap material (Eg = 0.7 eV) with a thermally induced insulator-metal phase transition at ∼343 K and evidence of an electric field induced transition at T < 343 K. To explore the electronic properties of VO2, a sandwich structure was prepared with a 2 nm VO2 layer embedded between an oxidized Si(100) surface and a 2 nm hafnium oxide (HfO2) layer. The layer structure was confirmed with high resolution transmission electron microscopy. The electronic properties were characterized with x-ray and ultraviolet photoemission spectroscopy, and the band alignment was deduced on both n-type and p-type Si substrates. The valence band offset between VO2 and SiO2 is measured to be 4.0 eV. The valence band offset between HfO2 and VO2 is measured to be ∼3.4 eV. The band relation developed from these results demonstrates the potential for charge storage and switching for the embedded VO2 layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.