Abstract

In this paper the low-frequency ideal MHD (magnetohydrodynamical) perturbations in the inner magnetosphere of the Earth are studied. The set of partial differential equations obtained from the MHD equations in the ballooning approximation and the dipole model of the geomagnetic field is used for this purpose. These equations describe both small-scale and large-scale perturbations in the magnetospheric plasmas. In the “cold” plasma approximation the obtained equations describe poloidal and toroidal standing Alfvén modes. The account of plasma pressure leads to the appearance of an additional type of oscillations—the slow magnetosonic modes. The stability of the magnetospheric plasma with respect to the ballooning perturbations was analyzed. We describe the ballooning perturbations taking into account a coupling between the poloidal Alfvén modes and the slow magnetosonic modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.