Abstract
Spinning plasma toroids, or spinning spheromaks, are reported as forming in partial atmosphere during high-power electric arc experiments. They are a new class of spheromaks because they are observed to be stable in partial atmosphere with no confining external toroidal magnetic fields, and are observed to endure for more than 600 ms. Included in this paper is a model that explains these stable plasma toroids (spheromaks); they are hollow plasma toroids with a thin outer shell of electrons and ions that all travel in parallel paths orthogonal to the toroid circumference - in effect, spiraling around the toroid. These toroids include sufficient ions to neutralize the space charge of the electrons. This model leads to the name Electron Spiral Toroid Spheromak (ESTS). The discovery of this new class of spheromaks resulted from work to explain ball lightning. A comparison is made between the experimental observations of spheromaks in partial atmosphere and reported ball lightning observations; strong similarities are reported. The ESTS is also found to have a high ion density of ~ 1019 ions/cm3 without needing any external toroidal magnetic field for containment, compared, for example, to tokamaks, with ion density limits of ~ 1015 ions/cm3. This high ion density is a defining characteristic and opens the potential to be useful in applications. The ESTS is a field reversed configuration plasma toroid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.