Abstract

This paper considers the placement of components onto printed circuit boards (PCBs) using surface mount technology. Multiple automatic placement machines, a variety of PCB types and a large volume for each PCB type characterize the environment studied. The problem addressed is that of allocating and arranging the components on several placement machines, organized into one or several assembly lines, while considering a different assembly time if components are located at different feeder locations. The one assembly line problem is equivalent to balancing a multi-model assembly line where models are assembled in small batches without component rearrangement between model changes. The objective is tominimize the weighted sum of each assembly PCBcycle time, which is defined as the maximum time a PCB has to spend on each machine. We solve this problem with Lagrangian relaxation techniques. Industrial case study results are presented. We also compare the global performance of five placement machines if they are organized as a single assembly line or broken down into two or more assembly lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.