Abstract

When an emergency happens, public communication networks, including cellular networks, public switched telecommunication networks, and the Internet can be utilized to support emergency communications. The admission control strategies currently employed by the Wireless Priority Service (WPS), however, have drawbacks of being not able to address dynamic traffic demands for different scenarios and locations. They assume a standard profile for emergency and public demand at all locations. In contrast, this paper presents an analytical modeling framework that creates flexible, adaptive algorithms for operators to easily use based on the specifics of each scenario. Numerical results show that this provides an obvious improvement over the existing approaches. The analysis approach provided here, that incorporates the reneging behavior of customers waiting for service, also presents another main contribution compared with past work for computing the average waiting time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.