Abstract
Charge unbalancing in series-connected cells can lead to lower storage capacity and shorter battery life. Model-based optimization strategies have proven to be very effective in addressing this problem. In this article, we propose a general nonlinear model predictive control (NMPC) scheme for obtaining a balancing-aware optimal charging. The presented method relies on an electrochemical model, tailored for control purposes. In view of the possibility of practical implementation, the concepts are subsequently specialized for an easily implementable power supply scheme. Finally, the NMPC approach is validated on commercial cells using a detailed battery simulator, with sound evidence of its effectiveness both under the assumption of full state availability and in the presence of an observer scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.