Abstract

We study the problem of finding the minimum number of edges that, when cut, form a partition of the vertices into k sets of equal size. This is called the k-BALANCED PARTITIONING problem. The problem is known to be inapproximable within any finite factor on general graphs, while little is known about restricted graph classes. We show that the k-BALANCED PARTITIONING problem remains APX-hard even when restricted to unweighted tree instances with constant maximum degree. If instead the diameter of the tree is constant we prove that the problem is NP-hard to approximate within n c , for any constant c<1. If vertex sets are allowed to deviate from being equal-sized by a factor of at most 1+ε, we show that solutions can be computed on weighted trees with cut cost no worse than the minimum attainable when requiring equal-sized sets. This result is then extended to general graphs via decompositions into trees and improves the previously best approximation ratio from O(log1.5(n)/ε 2) [Andreev and Räcke in Theory Comput. Syst. 39(6):929–939, 2006] to O(logn). This also settles the open problem of whether an algorithm exists for which the number of edges cut is independent of ε.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.