Abstract

Slurry transport pumps, the central equipment of deep-sea mining (DSM) systems, provide the lifting power required for lifting mineral ores from the seafloor to the surface. The current technical challenges are associated with transport security and the economic aspects of coarse ore particles in pumps and pipelines. This paper focuses on the transportation characteristics of slurry pumps and uses theoretical methods, numerical calculations, and experimental methods to identify a feasible working mode. The geometric parameters of impeller channels in pump hydraulics significantly influence the migration properties of particles which in turn affects the overall security and economy of the system. The ratio of the impeller cross-sectional area F2/F1 (F1: cross-sectional area of the impeller outlet; F2: cross-sectional area of the impeller inlet) affects the particle passing capacity but negatively impacts pump efficiency. The percent of particles in the excellent passage interval of 0.2 s to 0.25 s increases from 25 to 43% when the number increases from 1.57 to 2.51. The pump behavior increases of the head by 5–10 m, and the efficiency decreases by 5–10%. So, the recommended span of F2/F1 is 1.57–2.00, and satisfying particle passing ability and efficiency can be achieved in this range. This study can provide a reference for the commercial transportation of slurry ores for deep-sea mining systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.