Abstract

Bacterial grazing loss rates were studied by radioactive labeling of natural bacteria with L-(4,5- 3H) leucine and from the rate of disappearance of bacterial cells in the northwestern Indian Ocean. Bacterivory was measured in a mixed sample that had been combined from various depths across the euphotic zone. Experiments were performed on 26 occasions at 19 stations in the Gulf of Oman and the Arabian Sea during the intermonsoon–northeast monsoon period (November–December 1994). Combined uptake of radiolabeled bacteria (ULB) in 1–8 and 8–100 μm size fractions was somewhat lower than loss of label (LBL) measured in the bacterial fraction (0.2–1.0 μm), suggesting loss of radioactivity from the grazers due to metabolism. The less sensitive rate of disappearance of bacterial cells (LBC) was on average 51% higher than LBL estimates. Results from ULB and LBL measurements revealed that bacterivory was higher in the Gulf of Oman (average loss rate 4.1% h -1) than in the Arabian Sea where rates were slightly higher inshore (1.7% h -1) than in the central gyre. Heterotrophic nanoflagellates in the 1–8 μm size fractions were identified as the primary bacterivores. Microzooplankton (8–100 μm) accounted for 33% of total bacterivory in the Gulf of Oman but only 16% in the central Arabian Sea. Time-course experiments conducted at two stations indicated that diel changes in bacterivory may be substantial in the northwestern Indian Ocean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.