Abstract

Factor H-binding protein (fHbp) is a novel meningococcal vaccine candidate that elicits serum antibodies that activate classical complement pathway bacteriolysis and also inhibit binding of the complement down-regulatory protein, factor H, to the bacterial surface. One limitation of fHbp as a vaccine candidate is antigenic variability, since antibodies to fHbp in the variant 1 (v.1) antigenic group do not protect against strains expressing v.2 or v.3 proteins, and vice versa. We have identified amino acid residues of epitopes recognized by bactericidal anti-fHbp monoclonal antibodies prepared against fHbp from each of the variant groups. One epitope expressed by nearly all v.1 proteins mapped to the B domain, while epitopes expressed by fHbp v.2 or v.3 mapped to the C domain. The results provided the rationale for engineering chimeric fHbp molecules containing the A domain (which is conserved across all variant groups), a portion of the B domain of a v.1 protein, and the carboxyl-terminal portion of the B domain and the C domain of a v.2 protein. By enzyme-linked immunosorbent assay, the resulting recombinant chimeric proteins expressed epitopes from all three variant groups. In mice, the chimeric vaccines elicited serum antibodies with bactericidal activity against a panel of genetically diverse strains expressing fHbp v.1, v.2, or v.3. The data demonstrate the feasibility of preparing a meningococcal vaccine from a single recombinant protein that elicits broad bactericidal activity, including group B strains, which account for 50 percent of cases of meningococcal disease and for which there currently is no broadly protective vaccine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.