Abstract

Probiotic Escherichia coli Nissle 1917 (EcN) are employed as a bioreactor for intracellularly synthesizing tellurium nanorods (TeNRs) providing a biohybrid therapeutic platform (Te@EcN) for the elimination of advanced malignant tumor by photothermal immunotherapy. Te@EcN is found to possess superior photothermal property upon near-infrared irradiation, and can efficiently accumulate and retain in tumors, although EcN loses proliferation ability after the synthesis of TeNRs, thus inducing considerable immunogenic tumor cell death. Under co-stimulation by EcN acting as immunoadjuvants, maturation of dendritic cells and priming of cytotoxic T cells are largely promoted. In addition, Te@EcN can reprogram tumor-associated macrophages to ameliorate the immunosuppressive tumor microenvironment. Thus, tumor metastasis and recurrence can be efficiently suppressed. Most importantly, owing to the non-pathogenicity of probiotic EcN and their non-proliferative characteristics after TeNRs synthesis, Te@EcN is found to be rapidly metabolized and cleared from the normal tissues, showing very slight acute side effects in healthy mice even at a relatively high administration dose. Therefore, the proposed combined therapeutic strategy based on bacteria-synthesized TeNRs may find great potential in improving bacteria-mediated tumor therapy with increased antitumor efficacy and reduced toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.