Abstract

Bacterial vaginosis (BV) is the most common genital tract infection in women during their reproductive years and it has been associated with serious health complications, such as preterm delivery and acquisition or transmission of several sexually transmitted agents. BV is characterized by a reduction of beneficial lactobacilli and a significant increase in number of anaerobic bacteria, including Gardnerella vaginalis, Atopobium vaginae, Mobiluncus spp., Bacteroides spp. and Prevotella spp.. Being polymicrobial in nature, BV etiology remains unclear. However, it is certain that BV involves the presence of a thick vaginal multi-species biofilm, where G. vaginalis is the predominant species. Similar to what happens in many other biofilm-related infections, standard antibiotics, like metronidazole, are unable to fully eradicate the vaginal biofilm, which can explain the high recurrence rates of BV. Furthermore, antibiotic therapy can also cause a negative impact on the healthy vaginal microflora. These issues sparked the interest in developing alternative therapeutic strategies. This review provides a quick synopsis of the currently approved and available antibiotics for BV treatment while presenting an overview of novel strategies that are being explored for the treatment of this disorder, with special focus on natural compounds that are able to overcome biofilm-associated antibiotic resistance.

Highlights

  • The healthy vaginal microflora has been described as being constituted mainly by Gram-positive bacilli of the genus Lactobacillus, being L. crispatus, L. iners, L. gasseri, and L. jensenii the most common species (Ravel et al, 2011)

  • A profuse vaginal discharge and a rotten fish vaginal odor are characteristic symptoms, some women with bacterial vaginosis (BV) remain asymptomatic (Koumans et al, 2007). This condition is characterized by a dramatic shift of vaginal microflora which involves the loss of beneficial bacteria and a simultaneous proliferation of anaerobic bacteria including G. vaginalis, Atopobium vaginae, Mobiluncus spp., Bacteroides spp., and Prevotella spp. (Verhelst et al, 2004)

  • In vitro studies demonstrated that G. vaginalis biofilm displays a high resistance to the protective mechanisms of normal vaginal microflora, including hydrogen peroxide, and lactic acid produced by lactobacilli (Patterson et al, 2007), as well as an increased tolerance to antibiotics (Swidsinski et al, 2008)

Read more

Summary

Introduction

The healthy vaginal microflora has been described as being constituted mainly by Gram-positive bacilli of the genus Lactobacillus, being L. crispatus, L. iners, L. gasseri, and L. jensenii the most common species (Ravel et al, 2011). In vitro studies demonstrated that G. vaginalis biofilm displays a high resistance to the protective mechanisms of normal vaginal microflora, including hydrogen peroxide, and lactic acid produced by lactobacilli (Patterson et al, 2007), as well as an increased tolerance to antibiotics (Swidsinski et al, 2008).

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.