Abstract

Active members of the bacterial community in the sediment of Lake Washington, with special emphasis on C1 utilizers, were identified by employing two complementary culture-independent approaches: reverse transcription of environmental mRNA and 16S rRNA combined with PCR (RT-PCR) and stable-isotope probing (SIP) of DNA with the 13C-labeled C1 substrates methanol, methylamine, formaldehyde, and formate. Analysis of RT-PCR-amplified fragments of 16S rRNA-encoding genes revealed that gammaproteobacterial methanotrophs belonging to Methylobacter and Methylomonas dominate the active methylotroph population, while only one other known methylotrophic lineage, Methylophilaceae, was detected via this approach. Analysis of RT-PCR-amplified functional genes, pmoA and fae, allowed detection of alphaproteobacterial (Methylosinus) and gammaproteobacterial (Methylobacter, Methylomonas, and Methylomicrobium) methanotrophs, methylotrophs of the genus Methylobacterium, and yet-unidentified proteobacteria. SIP experiments allowed detection of a broad variety of groups actively metabolizing C1 compounds. Comparisons between 16S rRNA gene pools amplified from [13C]DNA and from [12C]DNA revealed that the proportion of Methylophilus-related sequences increased in the presence of [13C]methanol, [13C]methylamine, and [13C]formaldehyde; Novosphingobium-related sequences were enriched in the presence of [13C]methanol; Gemmatimonadaceae-related sequences were enriched in the presence of [13C]formaldehyde and [13C]formate; and Xanthomonadaceae-related sequences were enriched in the presence of [13C]formate. Analysis of fae genes amplified from [13C]DNAs isolated from different microcosms revealed specific shifts in populations in response to a specific C1 compound: Methylosinus sequences dominated the [13C]methanol microcosm pool, and beta- and gammaproteobacterial sequences dominated the [13C]methylamine microcosm pool. The [13C]formaldehyde microcosm was dominated by betaproteobacterial sequences and by sequences of a nonaffiliated group, while the [13C]formate microcosm was dominated by alpha- and betaproteobacterial sequences. Overall, these data point toward the presence of a diverse population of active methylotrophs in Lake Washington sediments and toward the existence of yet-uncultivated organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.