Abstract

Chemically initiated exchange (CIEE) luminescence reactions were reviewed and a new mechanism of luminescence with peracid as an intermediate is proposed; bacterial luminescence is generally considered to be a case of dioxetane luminescence, or, to be more precise, CIEE-luminescence which includes the generation of a cyclic peroxide. In the hypothesis the monooxygenase reaction (aldehyde →fatty acid) should not be coupled with emitter generation as is usually believed, but only with the generation of peracid. As to the generation of the emitter, excited flavin, it is likely to occur later, during the interaction of flavin with cyclic peroxide. Its consequence is the breaking of two chemical bonds (O—O and C—C) in the cyclic peroxide and simultaneous generation of 4α-hydroxyflavin in exited state. In general, the generation of light includes three stages: 1) the monooxygenase reaction and the concurrent production of peracid; 2) the conversion of peracid to cyclic peroxide; and 3) the interaction of cyclic peroxide with flavin (through the CIEE mechanism).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.