Abstract
The demand for natural lactone gamma-decalactone (GDL) has increased in the fields of food and cosmetic products. However, low productivity during bioprocessing limits its industrial production. In this study, a novel composite porous cell carrier, bacterial cellulose-alginate (BC-ALG), was used for long-term biotransformation and production of GDL. The effects of this carrier on biotransformation and related mechanisms were investigated. BC-ALG carriers showed improved mechanical strength over ALG carriers, with their internal embedded cell pattern changed to an interconnected porous structure. In five repeated-batch biotransformation experiments, the maximum concentration of GDL obtained in culture with BC-ALG carriers was 8.37 g/L, approximately 3.7 times higher than that from the medium with an ALG carrier alone. The result indicated that multiple hydrogen bonding interactions at the interface between BC and ALG contributed to the compatibility and stability of BC-ALG carriers. On the basis of the above results, the BC-ALG composite carrier can be considered ideal for immobilisation of cells for the production of GDL on an industrial scale, and has the potential to be utilised in other biological processes.
Highlights
Gamma-decalactone (GDL) is an important lactone additive with a peach-like flavour, and is widely used in foods, beverages and cosmetics [1]
The GDL yield obtained in the broth was compared with those of different bacterial cellulose-alginate (BC-ALG) carriers with free suspended culture (FSC) as controls
In the first batch of biotransformation, the maximum GDL obtained in medium C was 2.99 g/L, which was 30% higher than that from FSCs
Summary
Gamma-decalactone (GDL) is an important lactone additive with a peach-like flavour, and is widely used in foods, beverages and cosmetics [1]. Due to the drawbacks of limited yield and high cost of natural. Biotransformation has the advantages of quality and safety identical to those of natural GDL, but at a lower cost [2,3]. For GDL biotransformation, Yarrowia lipolytica is reported to have the highest productivity among all strains [4]. The yield of GDL decreases after a certain point, accompanied by a reduction in cell number during the bioprocess. This results from inhibitory effects of high concentrations of RA and the significant feedback effect of GDL, which lower both cell activity and GDL yield in long-term operations [10,11,12]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.