Abstract

The bacterial morphology and diversity in the reactors of a combined autotrophic nitritation and sulfur-carbon three-dimensional-electrode denitrification (CANSCTED) process operating under steady-state conditions were investigated by scanning electron microscopy and partial 16S rDNA cloning and sequencing. The CANSCTED process consisted of two parts, i.e., the nitritation membrane bioreactor (NMBR) and the sulfur-carbon three-dimensional-electrode denitrification reactor (SCTED). When the influent NH+ 4 concentration of NMBR ranged from 854 to 1086 mg N L−1, with about 50% NH+ 4 removal efficiency and NO− 2 accumulation rate, the spherical and spheroidal ammonia-oxidizing bacteria were predominant, with community successions of β-Proteobacteria (60.0%), Bacteroidetes (28.3%) and Chloroflexi (11.7%). The NMBR effluent with 429∼543 mg N L−1 NH+ 4 and 519∼578 mg N L−1 NO− 2 was continuously supplied to SCTED for sulfur denitrification, bioelectrochemical hydrogen denitrification, and anaerobic ammonium oxidation. The predominant bacterial community successions were β-Proteobacteria (78.3%) and ϵ-Proteobacteria (21.7%). When the SCTED influent was supplied with only NO− 2 (412–525 mg N L−1) as nitrogen substrate, the predominant bacteria in SCTED were short-bacilliform and spheroidal denitrification bacteria, β-Proteobacteria (82.0%), ϵ-Proteobacteria (16.4%) and γ-Proteobacteria (1.6%). Although the predominant bacterial communities were both β-Proteobacteria and ϵ-Proteobacteria in SCTED, the species and quantity of each community varied with the change of SCTED influent composition, which indicated that the composition influence the bacterial morphology and diversity in SCTED.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.