Abstract

Bacteria, biological colloids with wide presence in natural environments, would interact with plastic particles (emerging colloids with great concern recently) and thus would influence the fate and distribution of plastics in environment. In present research, the impacts of bacteria (both Gram (-) E. coli and Gram (+) B. subtilis) on the transport/deposition of model microplastics (MPs) in porous media were examined in NaCl salt solutions (5 and 25 mM, pH = 6). Both negative carboxylate-modified MPs (CMPs) and positive amine-modified MPs (AMPs) were concerned. We found that under both solution conditions, the presence of both types of bacteria decreased CMPs transport and enhanced retention of CMPs in sand columns. In contrast, the presence of bacteria (regardless of cell type) yet increased AMPs transport and decreased their deposition in sand columns under both ionic strength conditions. The mechanisms leading to the altered transport of CMPs and AMPs by bacteria were different. The formation of larger sized CMPs-bacteria clusters and the extra deposition sites resulted from bacteria adsorbed on quartz sand contributed to the decreased CMPs transport and enhanced their deposition in sand columns. Whereas, the formation of AMPs-bacteria clusters with overall negatively surface charge improved AMPs transport in quartz sand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.