Abstract

The metabotropic GABA(B) and adenosine A(1) receptors mediate presynaptic inhibition through regulation of voltage-dependent Ca(2+) channels, whereas K(+) channel regulation is believed to have no role at the CA3-CA1 synapse. We show here that the inhibitory effect of baclofen (20 μM) and adenosine (300 μM) on field EPSPs are differentially sensitive to Cs(+) (3.5 mM) and Ba(2+) (200 μM), but not 4-aminopyridine (100 μM). Barium had no effect on paired-pulse facilitation (PPF) in itself, but gave significant reduction (14 ± 5%) when applied in the presence of baclofen, but not adenosine, suggesting that the effect is presynaptic and selective on the GABA(B) receptor-mediated response. The effect of Ba(2+) on PPF was not mimicked by tertiapin (30 nM), indicating that the underlying mechanism does not involve GIRK channels. Barium did not affect PPF in slices from young rats (P7-P8), suggesting developmental regulation. The above effects of Ba(2+) on adult tissue were reproduced when measuring evoked whole-cell EPSCs from CA1 pyramidal neurons: PPF was reduced by 22 ± 3% in the presence of baclofen and unaltered in adenosine. In contrast, Ba(2+) caused no significant change in frequency or amplitude of miniature EPSCs. The Ba(2+)-induced reduction of PPF was antagonized by LY341495, suggesting metabotropic glutamate receptor involvement. We propose that these novel effects of Ba(2+) and Cs(+) are exerted through blockade of inwardly rectifying K(+) channels in glial cells, which are functionally interacting with the GABA(B) receptor-dependent glutamate release that generates heterosynaptic depression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.