Abstract

Control of the spatial profile of plasma current in tokamak plasmas has been demonstrated to be a key condition for achieving advanced scenarios with improved confinement and possible steady-state operation. The dynamics of the current profile are nonlinear and coupled with several other plasma parameters, motivating the design of model-based controllers that can account for these complexities. In this work, we consider a control-oriented model of the current profile evolution in DIII-D and the problem of regulating the current profile around a desired feed-forward trajectory. In open-loop, the response of the system to disturbances and perturbed initial conditions may be undesirable. To improve the performance of the system, the PDE model is discretized in space using a finite difference method and a backstepping design is applied to obtain a discrete transformation from the original system into an asymptotically stable target system with desirable properties. Through a nonlinear transformation, the resulting boundary control law utilizes the total plasma current, total power, and line averaged density as actuators. A Simserver simulation study is done to test the controller's performance and its implementation in the DIII-D plasma control system. Finally, experimental results showing the ability of the controller to reject input disturbances and perturbations in initial conditions are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.