Abstract
We study the diffusive motion of a test particle in a two-dimensional comb structure consisting of a main backbone channel with continuously distributed side branches, in the presence of stochastic Markovian resetting to the initial position of the particle. We assume that the motion along the infinitely long branches is biased by a confining potential. The crossover to the steady state is quantified in terms of a large deviation function, which is derived for the first time for comb structures in the present paper. We show that the relaxation region is demarcated by a nonlinear ‘light-cone’ beyond which the system is evolving in time. We also investigate the first-passage times along the backbone and calculate the mean first-passage time and optimal resetting rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.