Abstract

The quantum measurement of any observable naturally leads to noise added by the act of measurement. Approaches to evade or reduce this noise can lead to substantial improvements in a wide variety of sensors, from laser interferometers to precision magnetometers and more. In this paper, we develop a measurement protocol based upon pioneering work by the gravitational wave community which allows for reduction of added noise from measurement by coupling an optical field to the momentum of a small mirror. As a specific implementation, we present a continuous measurement protocol using a double-ring optomechanical cavity. We demonstrate that with experimentally-relevant parameters, this protocol can lead to significant back-action noise evasion, yielding measurement noise below the standard quantum limit over many decades of frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.