Abstract
Sphingomyelinase (SMase) from Bacillus cereus (Bc-SMase) hydrolyzes sphingomyelin (SM) to phosphocholine and ceramide in a divalent metal ion-dependent manner, and is a virulence factor for septicemia. Bc-SMase has three characteristic sites, viz., the central site (catalytic site), side-edge site (membrane binding site), and β-hairpin region (membrane binding site). Here, we show that the β-hairpin directly binds to gangliosides, especially NeuAcα2-3Galβ1-4Glcβ1-1ceramide (GM3) through a carbohydrate moiety. Neuraminidase inhibited the binding of Bc-SMase to mouse peritoneal macrophages in a dose-dependent manner. SPR analysis revealed that the binding response of Bc-SMase to liposomes containing GM3 was about 15-fold higher than that to liposomes lacking GM3. Moreover, experiments with site-directed mutants indicated that Trp-284 and Phe-285 in the β-hairpin play an important role in the interaction with GM3. The binding of W284A and F285A mutant enzymes to mouse macrophages decreased markedly in comparison to the binding by wild-type enzymes. Therefore, we conclude that GM3 is the primary cellular receptor for Bc-SMase, and that the β-hairpin region is the tethering region for gangliosides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.