Abstract

Abstract. When optimizing the performance of constrained robotic system, the motion trajectory plays a crucial role. In this research the motion planning problem for systems that admit a polynomial description of the system dynamics through differential flatness is tackled by parameterizing the system's so-called flat output as a polynomial spline. Using basic properties of B-splines, sufficient conditions on the spline coefficients are derived ensuring satisfaction of the operating constraints over the entire time horizon. Furthermore, an intuitive relaxation is proposed to tackle conservatism and a supporting software package is released. Finally, to illustrate the overall approach and potential, a numerical benchmark of a flexible link manipulator is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.