Abstract
A finite element method using B-splines is presented and compared with a conventional finite element method of Lagrangian type. The efficiency of both methods has been investigated at the example of a coupled nonlinear system of Dirac eigenvalue equations and inhomogeneous Klein-Gordon equations which describe a nuclear system in the framework of relativistic mean field theory. Although FEM has been applied with great success in nuclear RMF recently, a well known problem is the appearance of spurious solutions in the spectra of the Dirac equation. The question whether B-splines lead to a reduction of spurious solutions is analyzed. Numerical expenses, precision and behavior of convergence are compared for both methods in view of their use in large scale computation on FEM grids with more dimensions. A B-spline version of the object oriented C++ code for spherical nuclei has been used for this investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.