Abstract

Organic materials that can emit ultralong room-temperature phosphorescence (RTP) have attracted a great deal of interest. Whether the pure boric acid (BA) solid can emit RTP and the origin of the RTP in BA caused a debate recently. Herein, our first-principles calculations and experimental measurements suggest that RTP of BA originates from the B-O-O-B group in a (H2BO3)2 species, which can be formed by polymerization of two dehydrogenated BA molecules under light irradiation. The calculated absorption, fluorescence, and phosphorescence spectra of B-O-O-B match well with the experiments. Experimental X-ray photoelectron and X-ray absorption spectra evidence the existence of B-O-O-B in BA. The O-O bond in B-O-O-B can break upon optical excitation, creating two B-O radicals. Radiative transition from localized dangling orbitals of the B-O radicals to the delocalized orbitals of the crystal bulk leads to the observed RTP. Our calculated phosphorescence lifetime is ∼1 s, which agrees well with the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.