Abstract

Naturally occurring avermectins are allosteric modulators of glutamate-gated chloride channels (GluCls) and possess exceptionally potent anthelmintic, acaricidal, and insecticidal activities. Here, we develop photoswitchable azobenzene-avermectin (ABAVM) derivatives, which can be photoactivated upon ultraviolet irradiation. After illumination, the best compound p-AB4″AVM had a 1.88-fold and 2.74-fold insecticidal activity enhancement toward Culex pipiens pallens and Mythimna separata larvae, respectively. p-AB4″AVM allows for optical regulation of dorsal unpaired median neuron membrane potential with a 2.15-fold fluorescence intensity decrease after illumination. p-AB4″AVM and p-AB5AVM enable optical modulation of the behavioral response of Culex pipiens pallens larvae with 1- and 4-fold reduced mobility upon irradiation, respectively. The ABAVMs could be used to reversibly manipulate GluCls with light and may be useful for the mechanistic study of macrocyclic lactone insecticides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.