Abstract
An acoustic vector-sensor consists of three identical but orthogonally oriented acoustic particle-velocity sensors, plus a pressure sensor-all spatially collocated in a point-like geometry. At any point in space, this tri-axial acoustic vector-sensor can sample an acoustic wavefield as a 3 × 1 vector, instead of simply as a scalar of pressure. This vector, after proper self-normalization, would indicate the incident wave-field's propagation direction, and thus the incident emitter's azimuth-elevation direction-of-arrival. This "self-normalization" direction-of-arrival estimator is predicated on the spatial-collocation among the three particle-velocity sensors and the pressure-sensor. This collocation constriction is relaxed here by this presently proposed idea, to realize a spatially distributed acoustic vector-sensor, allowing its four component-sensors to be separately located. This proposed scheme not only retains the algorithmic advantages of the aforementioned "self-normalization" direction-of-arrival estimator, but also will significantly extend the spatial aperture to improve the direction-finding accuracy by orders of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.