Abstract

The formation of neuron networks is a complex phenomenon of fundamental importance for understanding the development of the nervous system, and for creating novel bioinspired materials for tissue engineering and neuronal repair. The basic process underlying the network formation is axonal growth, a process involving the extension of axons from the cell body towards target neurons. Axonal growth is guided by environmental stimuli that include intercellular interactions, biochemical cues, and the mechanical and geometrical features of the growth substrate. The dynamics of the growing axon and its biomechanical interactions with the growing substrate remains poorly understood. In this paper, we develop a model of axonal motility which incorporates mechanical interactions between the axon and the growth substrate. We combine experimental data with theoretical analysis to measure the parameters that describe axonal growth on surfaces with micropatterned periodic geometrical features: diffusion (cell motility) coefficients, speed and angular distributions, and axon bending rigidities. Experiments performed on neurons treated Taxol (inhibitor of microtubule dynamics) and Blebbistatin (disruptor of actin filaments) show that the dynamics of the cytoskeleton plays a critical role in the axon steering mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism, in which high-curvature geometrical features impart high traction forces to the growth cone. These results have important implications for our fundamental understanding of axonal growth as well as for bioengineering novel substrates that promote neuronal growth and nerve repair.

Highlights

  • Neurons are the basic cells of the nervous system

  • In this paper we show that axonal dynamics on micropatterned surfaces is controlled by a contact-guidance mechanism, which stems from the coupling between the axon and the high-curvature geometrical features of the growth substrate

  • We have previously demonstrated that axons of untreated neurons display maximum alignment along PDMS patterns for surfaces where the pattern spatial period d matches the linear dimension of the growth cone l, where l is in the range 2 to 6 μm [20]

Read more

Summary

Introduction

Neurons are the basic cells of the nervous system. During their growth neurons extend two types of processes: axons and dendrites, which navigate to other neurons and form complex neuronal networks that transmit electrical signals throughout the body. The extension of the axon is guided by its growth cone, a motile unit located at the distal tip of the axon that navigates through the surrounding environment using electrical, chemical, mechanical, and morphological cues [1,2,3,4]. The dynamics of the growth cone is controlled by a flexible ensemble of actin and microtubule filaments that form the neuron cytoskeleton [1,2,3,4,5,6,7].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.