Abstract

Abstract The stress state analysis of the sealing cylinder is of great significance for the safe operation of the sealing system. In this study, we probe a sealing system that can be simplified as an axisymmetric problem. In service, the rubber around the central pipe contacts the casing under the action of the axial pressure, and thus the sealing function is realized. The analytical solution of the stress at the sealing interface is derived based on the Love strain function in the axisymmetric configuration. Then, the relationship between the axial pressure and the gap (between the sealing cylinder and the casing) is presented, and the contact pressure at the contact interface is also given. The numerical simulation is performed, which is in agreement with the analytical solutions in the two deformation stages. The obtained results in the current work have also been comprehensively compared with the previous results, to give suggestions for engineering selection. These findings are beneficial to obtain a deep understanding on the mechanism of the sealing process, and provide some inspirations on the new types of sealing tools for mechanical engineering, chemical engineering, petroleum engineering, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.