Abstract

We derive axisymmetric equilibrium equations in the context of the hybrid Vlasov model with kinetic ions and massless fluid electrons, assuming isothermal electrons and deformed Maxwellian distribution functions for the kinetic ions. The equilibrium system comprises a Grad–Shafranov partial differential equation and an integral equation. These equations can be utilized to calculate the equilibrium magnetic field and ion distribution function, respectively, for given particle density or given ion and electron toroidal current density profiles. The resulting solutions describe states characterized by toroidal plasma rotation and toroidal electric current density. Additionally, due to the presence of fluid electrons, these equilibria also exhibit a poloidal current density component. This is in contrast to the fully kinetic Vlasov model, where axisymmetric Jeans equilibria can only accommodate toroidal currents and flows, given the absence of a third integral of the microscopic motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.