Abstract

Nanometer-sectioning optical microscopy has become an indispensable tool in membrane-related biomedical studies. Finally, many nanometer-sectioning imaging schemes, such as variable-angle total internal reflection fluorescence microscopy, metal-induced energy transfer (MIET) imaging, and supercritical-angle fluorescence microscopy have been introduced. However, these methods can measure a single layer of molecules, and the measurement ranges are below 100nm, which is not large enough to cover the thickness of lamellipodium. This paper proposes an optical imaging scheme that can identify the axial locations of two layers of molecules with an extended measurement range and a nanometer-scale precision by using MIET, axial focal plane scanning, and biexponential analysis in fluorescence lifetime imaging microscopy. The feasibility of the proposed method is demonstrated by measuring an artificial sample of a known structure and the lamellipodium of a human aortic endothelial cell whose thickness ranges from 100 to 450nm with 18.3nm precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.