Abstract
X-ray diffraction patterns from live vertebrate striated muscles were analyzed to elucidate the detailed structural models of the myosin crown arrangement and the axial disposition of two-headed myosin crossbridges along the thick filaments in the relaxed and contracting states. The modeling studies were based upon the previous notion that individual myosin filaments had a mixed structure with two regions, a “regular” and a “perturbed”. In the relaxed state the distributions and sizes of the regular and perturbed regions on myosin filaments, each having its own axial periodicity for the arrangement of crossbridge crowns within the basic period, were similar to those reported previously. A new finding was that in the contracting state, this mixed structure was maintained but the length of each region, the periodicities of the crowns and the axial disposition of two heads of a crossbridge were altered. The perturbed regions of the crossbridge repeat shifted towards the Z-bands in the sarcomere without changing the lengths found in the relaxed state, but in which the intervals between three successive crowns within the basic period became closer to the regular 14.5-nm repeat in the contracting state. In high resolution modeling for a myosin head, the two heads of a crossbridge were axially tilted in opposite directions along the three-fold helical tracks of myosin filaments and their axial orientations were different from each other in perturbed and regular regions in both states. Under relaxing conditions, one head of a double-headed crossbridge pair appeared to be in close proximity to another head in a pair at the adjacent crown level in the axial direction in the regular region. In the perturbed region this contact between heads occurred only on the narrower inter-crown levels. During contraction, one head of a crossbridge oriented more perpendicular to the fiber axis and the partner head flared axially. Several factors that significantly influence the intensities of the myosin based-meridional reflections and their relative contributions are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.