Abstract

Experimental measurements of axial dispersion coefficients in high-speed counter-current chromatography have been carried out in the single-phase and two-phase modes. Axial dispersion coefficients were calculated from the residence time distribution curve (or the elution profile). The experimental data obtained were used to develop a model involving Peclet number Pe, Reynolds number and the ratio of flow velocity u to linear angular velocity u θ for predicting the axial dispersion coefficient. Furthermore, the models obtained from the single-phase and two-phase modes were compared, and a counterintuitive phenomenon was found in that the effects of the flow rate and the rotation speed on the axial dispersion coefficients are inconsistent: the axial dispersion coefficient decreases with the rotation speed and increases with the flow rate in the single-phase mode, but increases with rotation speed and decreases slightly with the flow rate in the two-phase mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.