Abstract

Recycling of waste concrete is beneficial and necessary from the viewpoint of environmental preservation and effective utilization of resources. The carbon fiber reinforced polymer tendon (CFRP tendon) has been widely used in concrete structures due to its high-strength, lightweight, good erosion-resistance, diamagnetism and anti-fatigue. The compressive behavior of recycled-concrete-segment/lump filled steel tubular columns with inner CFRP tendons are investigated in this paper. The formula of ultimate capacities of the columns under axial compression has been derived based on unified strength theory. Good agreement can be found from the comparison of the analytical results obtained in this paper and experimental data. Parametric studies are carried out to evaluate the effects of intermediate principal stress, mixture ratio of the recycled concrete and reinforcement ratio on the bearing capacities of the columns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.