Abstract

Laccase is a multi‐copper oxidase which oxidizes substrate at the type 1 copper site, simultaneously coupling the reduction of dioxygen to water at the trinuclear copper center. In this study, we used site‐directed mutagenesis to study the effect of axial bonds between the metal and amino acid residue side chains in lacTT. Our kinetic and spectral data showed that the replacement of the axial residue with non‐coordinating residues resulted in higher efficiency (k cat/K m) and a lower Cu2+ population at the type 1 copper site, while substitution with strongly coordinating residues resulted in lower efficiency and a higher Cu2+ population, as compared with the wild‐type. The redox potentials of mutants with hydrophobic axial residues (Ala and Phe) were higher than that of the wild‐type. In conclusion, these insights into the catalytic mechanism of laccase may be of use in protein engineering to fine‐tune its enzymatic properties for industrial application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.