Abstract

A plethora of metropolitan area wavelength-division multiplexing networks have been proposed and examined in recent years with the aim to alleviate the bandwidth bottleneck between increasingly higher-speed local/access networks and high-speed backbone networks. Many of the considered metropolitan area networks use the arrayed waveguide grating as an optical building block. As we review in this article, in ring, interconnected ring, and meshed metro WDM networks, the AWG is typically used to realize wavelength multiplexers, demultiplexers, or optical add-drop multiplexers without capitalizing on spatial wavelength reuse. By using the AWG as a wavelength router, highly efficient star metro WDM networks can be realized due to extensive spatial wavelength reuse. We give an overview of star metro WDM networks that are able to meet modular upgradability, transparency, flexibility, efficiency, reliability, and protection requirements of future metro networks. AWG-based star networks also enable an evolution path of ring networks toward highly efficient and fault-tolerant hybrid star-ring metro network solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.