Abstract

Avermectin B1a, a macrocyclic lactone with broad spectrum anthelmintic activity, affects neuromuscular transmission in the lobster stretcher muscle. Perfusion of the muscle with 1-10 microgram of the drug per ml eliminates inhibitory postsynaptic potentials within a few minutes. Intracellularly recorded excitatory postsynaptic potentials are gradually reduced in amplitude over 20-30 min, and their falling phases become faster; there is no effect, however, on extracellularly recorded excitatory potentials. Avermectin B1a reduced the input resistance of the muscle fibers with a time course similar to that of the reduction of excitatory potentials. Washing for up to 2 hr with drug-free solution fails to reverse the drug's effects. However, perfusion with 20 microgram of picrotoxin per ml results in recovery of the excitatory potentials and input resistance. Avermectin B1a also blocks the firing of the crayfish stretch receptor neuron, and this block is also reversed by picrotoxin. We hypothesize that the reduction in excitatory postsynaptic potentials after avermectin B1a treatment is caused solely by reduction in membrane resistance; additional experiments suggest that the reduction in membrane resistance is due to the opening of membrane Cl- channels, perhaps including those regulated by gamma-aminobutyric acid at the inhibitory synapse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.