Abstract

We propose a conjugate gradient type optimization technique for the computation of the Karcher mean on the set of complex linear subspaces of fixed dimension, modeled by the so-called Grassmannian. The identification of the Grassmannian with Hermitian projection matrices allows an accessible introduction of the geometric concepts required for an intrinsic conjugate gradient method. In particular, proper definitions of geodesics, parallel transport, and the Riemannian gradient of the Karcher mean function are presented. We provide an efficient step-size selection for the special case of one dimensional complex subspaces and illustrate how the method can be employed for blind identification via numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.