Abstract

Recurrence quantification analysis (RQA) is a well established method of nonlinear data analysis. In this work, we present a new strategy for an almost parameter-free RQA. The approach finally omits the choice of the threshold parameter by calculating the RQA measures for a range of thresholds (in fact recurrence rates). Specifically, we test the ability of the RQA measure determinism, to sort data with respect to their signal to noise ratios. We consider a periodic signal, simple chaotic logistic equation, and Lorenz system in the tested data set with different and even very small signal-to-noise ratios of lengths 10^2, 10^3, 10^4, and 10^5. To make the calculations possible, a new effective algorithm was developed for streamlining of the numerical operations on graphics processing unit (GPU).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.