Abstract

LSTM network is an effective RNN model to predict the system RUL for its superior performance in sequential data processing. Usually, networks trained by life-cycle labeled dataset would possess similar RUL predicting accuracies, because the network training algorithm could ensure the network optimality for the whole training dataset. However, for networks trained by non-life-cycle labeled samples, the network uncertainty caused by different training conditions could lead to degradation prediction uncertainty for some local points. Further, the RUL predicting results that are computed by these uncertain local points may shows relatively large differences. Therefore, in order to obtain an accurate RUL prediction with networks trained by non-life-cycle labeled samples, our paper proposes a novel network model averaging method to deal with the network uncertainty. What is more, to learn the temporal correlation information of training samples sufficiently, we adopt the Bi-LSTM network to illustrate the application of the proposed network model averaging method. Finally, degradation values of Graphite/LiCoO2 battery are used to verify the effectiveness of the proposed method. The results show that the proposed method could improve the RUL prediction accuracy and reduce the prediction error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.