Abstract

Abstract Inverse reactions of 63, 65Cu beams on 18, 16O targets have been used to populate states of 78Kr by fusion-evaporation reactions. The excited nuclei recoiled at high velocity v/c ≈ 7 % through a polarized iron (54Fe) layer and were stopped in a copper layer. During the period in iron, 0.05–0.65 ps, the nuclei were subjected to the intense transient magnetic field (initially ∼ 3500 T). The resulting precession of the high-spin nuclear states populated during this time was determined by measuring the time integral rotation angle of the discrete γ-ray transitions at low spin. The average g-factor at low spin 2 ≦ J ≦ 8 compared to that at higher spin 8 ≦ J ≦ 12 in 78Kr was found to be identical within the experimental uncertainties of ∼ 15 %. This result implies that either there are no rotational alignment effects at the backbend in 78Kr or more plausibly, proton (g ≈ 1) and neutron (g ≈ 0) aligned bands are equally competitive and both populated in the reaction. It is then likely that the resulting g-factor represents an average over many populated proton and neutron aligned bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.