Abstract
We consider interactions between players in groups of size [Formula: see text] with payoffs that not only depend on the strategies used in the group but also fluctuate at random over time. An individual can adopt either cooperation or defection as strategy and the population is updated from one time step to the next by a birth-death event according to a Moran model. Assuming recurrent symmetric mutation and payoffs to cooperators and defectors according to the composition of the group whose expected values, variances, and covariances are of the same small order, we derive a first-order approximation for the average abundance of cooperation in the selection-mutation equilibrium. In general, we show that increasing the variance of any payoff for defection or decreasing the variance of any payoff for cooperation increases the average abundance of cooperation. As for the effect of the covariance between any payoff for cooperation and any payoff for defection, we show that it depends on the number of cooperators in the group associated with these payoffs. We study in particular the public goods game, the stag hunt game, and the snowdrift game, all social dilemmas based on random benefit b and random cost c for cooperation, which lead to correlated payoffs to cooperators and defectors within groups. We show that a decrease in the scaled variance of b or c, or an increase in their scaled covariance, makes it easier for weak selection to favor the abundance of cooperation in the stag hunt game and the snowdrift game. The same conclusion holds for the public goods game except that the variance of b has no effect on the average abundance of C. Moreover, while the mutation rate has little effect on which strategy is more abundant at equilibrium, the group size may change it at least in the stag hunt game with a larger group size making it more difficult for cooperation to be more abundant than defection under weak selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.