Abstract

As the interest in urban agriculture and people’s demand for eco-friendly food grow, the number of urban gardeners who directly grow and harvest will increase. The aim of this study was to compare the effect of conventional fertilizer with the effluent water from the biofloc technology inland aquaculture in the concept of resource circulation as a substitute for fertilizer used in urban agriculture. In order to verify the effect of fertilizer on the cultivation of cherry tomato, tomato seedlings were transplanted on the horticultural soil without nutrients and treated for 8 weeks. Experimental treatment was carried out in five treatments: control, hyponex solution (HS), slow-released fertilizer (SF), effluent water daily treatment (DE), and effluent water treatment once a week (WE). The growth characteristics of the cherry tomatoes showed significant differences among the treatments except for root length. In the case of plant length was shown HS=WE›DE=SF›control, and stem diameter was shown DE=SF ›WE=HS›control. It was found that HS and WE were not significantly different in shoot length and diameter, and DE and SF showed no difference. In the case of number of leaves, HS, DE, and WE showed a significantly higher level than SF and control. In other growth characteristics, DE and SF showed higher growth. As for the growth of cherry tomato fruit, the sugar content did not show any significant difference among the treatments except control. Weight per fruit and yield were significantly higher in HS and WE than DE and SF. Based on these results, it is considered that the use of effluent water is comparable to the use of urban agricultural fertilizer as compared with chemical fertilizers in cultivating crops. Key words: alternative fertilizer, kitchen garden, recycling effluent water, resource virtuous cycle, urban farming

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.