Abstract
For the ship motion with large inertia coupled system identification modeling inaccuracy, the ship scale effect and the existence of partial unmeasured ship data problems. In this paper, an auxiliary model nonlinear innovation least squares identification algorithm is proposed. The new algorithm uses the output of the auxiliary model instead of the unmeasurable variables in the full-scale test data of the ship, and optimizes the error using the tangent function. Compared with the existing algorithm, the error of the improved algorithm decreases with the increase of time and continuously approaches to zero, which greatly improves the identification accuracy and convergence efficiency. The results show that the improved algorithm has significant identification accuracy and reliability. The identification method designed in this paper can be applied to the field of ship intelligent navigation engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.