Abstract

The construction of auxiliary matrices for the six-vertex model at a root of unity is investigated from a quantum group theoretic point of view. Employing the concept of intertwiners associated with the quantum loop algebra $U_q(\tilde{sl}_2)$ at $q^N=1$ a three parameter family of auxiliary matrices is constructed. The elements of this family satisfy a functional relation with the transfer matrix allowing one to solve the eigenvalue problem of the model and to derive the Bethe ansatz equations. This functional relation is obtained from the decomposition of a tensor product of evaluation representations and involves auxiliary matrices with different parameters. Because of this dependence on additional parameters the auxiliary matrices break in general the finite symmetries of the six-vertex model, such as spin-reversal or spin conservation. More importantly, they also lift the extra degeneracies of the transfer matrix due to the loop symmetry present at rational coupling values. The extra parameters in the auxiliary matrices are shown to be directly related to the elements in the enlarged center of the quantum loop algebra $U_q(\tilde{sl}_2)$ at $q^N=1$. This connection provides a geometric interpretation of the enhanced symmetry of the six-vertex model at rational coupling. The parameters labelling the auxiliary matrices can be interpreted as coordinates on a three-dimensional complex hypersurface which remains invariant under the action of an infinite-dimensional group of analytic transformations, called the quantum coadjoint action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.