Abstract
In meiosis-I crane-fly spermatocytes 3 autosomal half-bivalents move to each pole in anaphase while the 2 sex-chromosomal univalents remain at the equator. The sex chromosomes move to opposite poles only after the autosomes reach the poles; the sex chromosomes start to move polewards about 25 min after the autosomal half-bivalents have begun to move. We irradiated portions of single autosomal spindle fibres with an ultraviolet microbeam and found that these irradiation altered the subsequent sex-chromosome movements. Two effects were observed. In one, one of the sex chromosomes did not move at all; the sex cin after the autosomal half-bivalents have begun to move. We irradiated portions of single autosomal spindle fibres with an ultraviolet microbeam and found that these irradiation altered the subsequent sex-chromosome movements. Two effects were observed. In one, one of the sex chromosomes did not move at all; the sex cin after the autosomal half-bivalents have begun to move. We irradiated portions of single autosomal spindle fibres with an ultraviolet microbeam and found that these irradiation altered the subsequent sex-chromosome movements. Two effects were observed. In one, one of the sex chromosomes did not move at all; the sex chromosome that remained at the equator would normally have moved to the pole associated with the irradiated autosomal spindle fibre. In the second, both sex chromosomes moved to the same pole, always that of the non-irradiated side. These effects occurred whether or not autosomal anaphase movement was blocked by the irradiation. There was no wavelength dependence for altering sex-chromosome movements. Sex-chromosome movements were altered only when at least one sex-chromosomal spindle fibre was adjacent to the irradiated autosomal spindle fibre; when neither sex chromosome had a spindle fibre adjacent to the irradiated autosomal spindle fibres the chromosomes always moved normally. Irradiation of sex-chromosomal spindle fibres during sex-chromosomal anaphase showed short blockages of movement (usually 5-8 min), and then complete recovery. Direct irradiation of sex-chromosomal spindle fibres (without irradiating autosomal spindle fibres) when the autosomes were in anaphase but the sex chromosomes were in metaphase never caused abnormal sex-chromosome movements. These results eliminate the possibility that when we irradiated autosomal spindle fibres that were adjacent to sex-chromosomal spindle fibres the sex-chromosomal spindle fibres were irradiated inadvertently and were unable to recover from the damage. We suggest that the irradiations of autosomal spindle fibres alter a control system involved in "turning on' sex-chromosomal spindle fibre motors, rather than directly altering the motors. We suggest that interactions between spindle fibres are somehow involved in this control system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.