Abstract

Markov-switching models are usually specified under the assumption that all the parameters change when a regime switch occurs. Relaxing this hypothesis and being able to detect which parameters evolve over time is relevant for interpreting the changes in the dynamics of the series, for specifying models parsimoniously, and may be helpful in forecasting. We propose the class of sticky infinite hidden Markov-switching autoregressive moving average models, in which we disentangle the break dynamics of the mean and the variance parameters. In this class, the number of regimes is possibly infinite and is determined when estimating the model, thus avoiding the need to set this number by a model choice criterion. We develop a new Markov chain Monte Carlo estimation method that solves the path dependence issue due to the moving average component. Empirical results on macroeconomic series illustrate that the proposed class of models dominates the model with fixed parameters in terms of point and density forecasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.